

Risk Assessment Feasibility Studies Economic Due Diligence United Nations Classification Framework Utilization and Sequestration Authenticate Greenhouse Gas Assertions Surface and Sub-Surface Integration

CONTENTS

- Value Chain Introduction and Terminology
- Market Overview
- Technology and Costs
 - Capture
 - Compression and Transportation
 - Injection and Storage
- Case Study: Vertically-Integrated CCS
- Case Study: Regional CCS
- Historical Carbon Capture Performance and Issues

VALUE CHAIN TO COMMERCIALITY

*CCS & CCUS is interchangeably used wherein CCS is Carbon Capture and Storage/Sequestration and CCUS – Carbon Capture, Use/Utilization, and Storage/Sequestration

POWER PLANT CCS PROJECT ECONOMICS

<u>Specifications</u>: Post-combustion carbon capture from a coal power plant; Capturing 1.4 MTPA from 240 MW boiler; 82 mile pipeline, 12" diameter, CO₂ transported in supercritical state; Injection for EOR

- CO₂ injected for EOR much of the CO₂ will remain in the reservoir as a result
- Economics driven by:
 - Oil price: At what price does incremental oil recovery generated by miscible CO₂ injection justify cost to build/operate facility?
 - 45Q Tax Credit: Generates tax offset varying depending on end-use of CO₂

ANALYZING RAPID MARKET GROWTH

Intergovernmental Panel on Climate Change (IPCC) set a goal of limiting global temperature increase to 1.5 °C in 2015

5,635 MTPA Carbon Capture required by 2050 estimated by Global CCS versus 111 MTPA deployed today

- Majority in U.S., Northern Europe, and China
- Carbon pricing is generally uncertain across projects and is tied to geography
- US Projects in advanced development due to carbon incentive speculation and 45Q
- Projects in Europe generally are in early development

DE-MYSTIFYING CARBON CAPTURE ()

Capture **Configuration** location of CO₂ capture in the stream flow and general type of equipment Capture Technology process technology used to separate CO₂ from other components to generate a pure CO₂ stream

- Combustion (Post & Pre) configuration dominates while Absorption technology is less risky • and most deployed
- Post-combustion capture is almost exclusively used with absorption technology, while pre-• combustion capture typically uses adsorption, but can use absorption as well.

exhaust

SUSTAINABLE ENERGY CONSULTING

Absorption

Pre-

Combustion

Capture Configuration

Industrial

Post-

Combustion

ASSESSING CAPTURE CONFIGURATIONS ()

APPLYING CAPTURE TECHNOLOGIES ()

CO₂ FLUID CHARACTERISTICS

Depending on the technical and commercial requirements of project, CO₂ may be transported in different physical states.

Dense Phase

- The dense phase has a viscosity similar to gas but a density similar to liquids
- Typical CO₂ transportation is • performed at 10 – 15 MPa and 15 – 30 °C to maintain dense phase

Example:

Abu Dhabi CCS Phase 1

Supercritical Phase

- The supercritical phase is similar to dense phase, but is neither a liquid nor a gas
- Higher pressure drops over the same distance when compared to dense phase

Example:

Hilcorp West Ranch EOR Pipeline

Gas Phase

The low density of gas phase means less capacity is available to transport but does not require high cost of compression to

liquid phase

Example:

Kinder Morgan Central

Basin CO₂ Pipeline

CO₂ COMPRESSION CONSIDERATIONS

1 Dehydration is required to minimize corrosion and can be accomplished using:

- Cryogenic dehydration
- TEG (Tri-ethylene glycol) dehydration
- For liquid CO₂ transportation compression is required to shift CO₂ into dense phase
 - Centrifugal good for high volume
 - Reciprocating good for high pressures

Al Reyadah PFD showing dehydration and compression

ADNOC's Al Reyadah Carbon Capture Facility

TRANSPORTATION VIA PIPELINES 😑

CO₂ Pipelines differ in some critical considerations compared to oil & gas pipelines:

- <u>Corrosion Protection</u>: Because CO₂ forms carbonic acid in the presence of water, it is necessary to ensure high CO₂ purity through dehydration before entering the pipeline. Internal coating is often required to extend long pipeline operating life.
- Operating conditions: Maintaining operating
 conditions within certain pressure and temperature ranges is required to prevent CO₂ phase transition

Pipeline Growth in the Industry

 As of 2018, over 5000 miles CO₂ pipelines exist worldwide (Compared to 4000 mi in 2013, 1500 mi in 2007)

List of Planned and Existing CO₂ Pipelines as of 2016

INJECTION OF CO₂

Christmas Tree/Surface Valving

 CO_2 has been injected commercially for EOR since 1972 and is welldeveloped. Injection of CO_2 requires corrosion-resistant materials and operational practices to prevent corrosion and CO_2 leakage.

Operational and safety practices:

- Corrosion protection of the casing strings is usually done via impressed or passive currents and chemically inhibited (oxygen, biocide, corrosion inhibitor) fluid is used in the casing-tubing annulus.
- Special procedures are used for handling and installing the production tubing to provide gas tight seals between adjacent tubing joints and eliminate coating or liner damage.
- Tubing and casing leak detection methods and repair techniques are required, using both resin and cement squeeze technologies as well as insertion of fiberglass and steel liners.
- Formulation and implementation of criteria unique to siting wells in or near populated areas incorporating: fencing, monitoring and atmospheric dispersion monitoring elements to protect public safety.
- Operator experience with CO₂ injection anticipates normal corrosion and surface facility problems.
- Mechanical integrity testing shows cracks and failure points which is critical for high corrosive, high pressure species.

ENHANCED OIL RECOVERY (EOR)

Captured CO₂ can be used for EOR or stored long-term depending on the project requirements and goals

- CO₂ for EOR is associated with the term **CC<u>U</u>S**: Carbon Capture, <u>Utilization</u>, and Storage
- Various screening criteria is used to decide if EOR can be used for incremental oil recovery. Technically (although not practically), all reservoirs can utilize EOR the driving factor is attainment of Minimum Miscibility Pressure (MMP), which is a function of reservoir depth, permeability, pressure, temperature, CO₂ composition, and hydrocarbon characteristics.
- Incremental oil recovery as a % of OOIP can range greatly depending on well placement and reservoir conditions.

< 9,800 and >2,000
<250, but not critical
>1,200 to 1,500
>1 to 5
>27 to 30
≤10 to 12
>0.25 to 0.30 Source: NETL (DOE)

Criteria for Screening Reservoirs for CO₂ EOR Suitability

- Projecting incremental recovery includes:
- Dimensionless recovery curves (example shown to the right)
- Analysis of historical performance under CO₂ flooding
- Analysis of analog reservoir
 performance if there is no CO₂
 history for the field.

Dimensionless Recovery Curve showing Tertiary Recovery

LONG-TERM STORAGE/SEQUESTRATION

- Associated with the term **CCS**: Carbon Capture and Storage
- CO₂ can be stored in <u>saline aquifers</u> or <u>depleted gas reservoirs</u>:
 - Saline aquifers can be characterized as Primary, where bulk CO_2 is injected and limited by aquifer pressure, or Secondary, where water is displaced with CO_2 and can be disposed or processed and monetized.
 - <u>Depleted gas reservoirs</u> can store a comparable volume of bulk CO₂ to the original in-place gas. Exceeding the original reservoir pressure will risk a formation seal breach. Because the reservoir formerly stored natural gas, there is a lower leakage risk compared to saline aquifers.

- Determining reservoir CO₂ storage capacity follows a similar workflow to a reserve assessment.
- Key areas of analysis are leakage pathways (migration points), pressure requirements, trap size, permeability, and well placement
- A typical geoscience approach includes petrophysics, geophysics, the resulting geological interpretation, and geostatic modeling.
- Reservoir engineering follows and includes PVT analysis, SCAL analysis, PTA/RTA for reservoir properties, volumetric analysis, material balance, and computational reservoir simulation.

The reservoir is characterized quantitatively and assigned storage resource according to SPE-SRMS, which is analogous to SPE-PRMS.

Reservoir Simulation with relative CO₂ Concentration

POWER PLANT CCS PROJECT ECONOMICS REVISITED

<u>Specifications</u>: Post-combustion carbon capture from a coal power plant; Capturing 1.4 MTPA from 240 MW boiler; 82 mile pipeline, 12" diameter, CO₂ transported in supercritical state; Injection for EOR

CASE STUDY: NATURAL GAS PROCESSING CCS CONCEPT COMPARISON

Scope of Work

The client wanted an idea of potential capture concepts and costs for multiple natural gas processing plants located in the same region:

- Seven gas processing plants provided CO₂ from flue gas from on-site power generation One plant additionally provided CO₂ from reservoir gas.
- We looked at nine different concepts varying the capture and compression configuration of the plants and estimated CAPEX, OPEX, and \$/tonne CO₂ captured for all concepts

Technical Features

- 5.28 MTPA CO₂ captured
- Over 10 Bscfd of natural gas processed
- Post-combustion absorption considered as commercially mature capture technology
- Greenfield compressor station able to process 432 MMscfd pure CO₂ from 6 barg to 240 barg using 92,600 HP of compression
- Flue gas, gas CO₂, and dense-phase CO₂ pipeline lengths differed based on the concept evaluated

Conclusions

• Based on our analysis, we concluded that capturing CO₂ at a single location instead of individually at each plant would significantly reduce overall project costs

STRATEGIES TO REDUCING BREAKEVEN PRICE

REVIEWING POLICY CONSIDERATION

Approaches to price of carbon

Carbon Tax (CO₂/tonne)

Emission Trading System (ETS)

- An emissions trading system
 generally works by the "cap and trade" system. The government
 establishes a maximum amount of
 emission allowances (the "cap")
 and distributes them to different
 facilities either freely or by
 auction.
- Facilities are then free to trade excess emission allowances as needed. An under-emitting facility can profit by selling allowances to a facility which is projected to over-emit.

Tax Credit (45Q)

- U.S. Tax Credit expanded in 2018 and again in 2021 to increase the value of utilizing CO₂ for EOR or long-term sequestration
- Facilities must be under construction by January 1, 2032
- Infrastructure Investment and
 Jobs Act, passed November 2021,
 increases price of carbon from:
 - \$50 to \$85 per tonne for long-term sequestration
 - \$35 to \$60 per tonne

Carbon Tax Pricing of Various Countries as of December 14, 2021

HISTORICAL CCUS PERFORMANCE

- CCUS is regarded as a <u>critical pathway</u> technology to reducing emissions and atmospheric CO₂ levels.
- Historically, CCUS projects have encountered issues:
 - Kemper
 - Petra Nova
 - Gorgon CCS

KEMPER – PROJECT MANAGEMENT

Major Stakeholder(s): Mississippi Power, Southern Energy

Location: Kemper County, MS

Feedstock: Lignite coal

Capacity: 3.0 – 3.5 MTPA

Capture Technology: Pre-combustion IGCC (KBR)

CO₂ Purpose: Onshore EOR

Timing: Construction began in June 2010, expected completion in May 2014. Scrapped in 2017 after many delays

Cost: \$2.2 B projected initially

- Final cost ballooned to \$7.5 B before regulators in Mississippi mandated that Kemper switch to natural gas in 2017.
- Project management underestimated the level of technology complexity:
 - Integrated gasification combined cycle (IGCC)
 - Technology issues included chronic coal dust suppression issues, tube leaks in the synthetic gas cooler, insufficient process water capacity, and a too-small nitrogen plant, which required trucks to haul gas to the plant.
- Risk assessment was incomplete unknown risks included equipment reliability with sustained gasifier operation and economic viability compared to natural gas.
- Changing natural gas market (Economic pressure from natural gas)
- Low-cost gas production

Source: E&E

PETRA NOVA – MARGINAL ECONOMICS

Major Stakeholder(s): NRG, JX Nippon Oil and Gas Exploration Ltd. Location: Near Houston, TX Feedstock: Coal Capacity: 1.4 MTPA Capture Technology: Post-combustion amine scrubbing CO₂ CO₂ Purpose: To West Ranch (Hilcorp) oil fields for EOR Timing: Constructed on-time and on-budget Cost: About \$1B in total

Source: EIA

- NRG's W.A. Parish plant was one of U.S. highest emitters
- Designed production increase as a result of EOR operations is 500 bbl/day, increasing total production to approximately 15,000 bbl/day
 - At \$50 barrel, Hilcorp realizes a net loss of oil production
- Shut down May 2020 during pandemic due to poor economics

GORGON CCS – TECHNICAL DIFFICULTIES

Major Stakeholder(s): Chevron (operator), ExxonMobil, Shell, Tokyo Gas, Osaka Gas

Location: Barrow Island, Western Australia

Feedstock: Natural gas

Capacity: 4 MTPA

Capture Technology: Natural gas processing

CO₂ Purpose: Long-term sequestration

Timing: Construction began in September 2009, startup of Gorgon in 2016, startup of Gorgon CCS in August 2019 - The delay is reported to have resulted in an additional 7 million tonnes of CO_2 being vented into the atmosphere.

Cost: \$2B

- Original project goal was to inject 80% of emissions over first 5 years.
 - Injected 2.26 MT from July 2020 July 2021 compared to 4 MTPA capacity
 - Total of 5 MT from startup to July 2021
- The project continually ran into problems with its "Pressure Management System"
 - Captured CO₂ injected into the lower Dupuy Formation
 - Water produced from Dupuy formation re-injected into Barrow Formation
- High sand in the process stream (producing wells)
- Chevron may be on the hook for \$100 MM in emission offsets

THANK YOU

HERMAN G. ACUNA, P.E.

Executive Vice President

Email: Herman_Acuna@Ryderscott.com

Office Ph.: +1-713-751-5527

Cell Ph.: +1-832-788-6075

STEVEN BECK

Project Engineer

Email: Steven_Beck@ryderscott.com

Office Ph.: +1-713-751-5572

Cell Ph.: +1-713-306-1481